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AFIT/GE/ENG/01M-05

Abstract

Multi-color infrared imaging missile-warning systems requi;e real-time detection
techniques that can process the wide instantangous field of regard of focal plane array sensors with
.a low false alarm rate. Current technology applies classical statistical methods to this problem and
ignores neural network techniques. Thus the research reported here is novel in that it investigates
the use of radial basis function (RBF) neural networks to detect sub-pixel missile signatures. An
RBF neural network is designed and trained to detect targets in two-color infrared imagery using a
recently developed regression tree algorithm. Features are calculated for 3 by 3 pixel sub—hﬁages in
each color band and concatenated into a vector as input to the network. The RBF network responds
with a value of unity to feature vectors representing missiles and with zero to vectors representing
background. Images are thresholded prior to application to the trained RBF network to narrow the
field of interest of the RBF network and increase missile detection speed. The RBF network-based
technique then generates potential target locations and probabilities t.hat the locations correspond to
missiles. Results show that the RBF network-Based technidue operates in near real-time and detects
100% of the missiles in data that was not used in training. Receiver operéting characteristic (ROC)
curves show that overly high classification thresholds can exceed the RBF network response for a
true missile and result in non-detection. However, these ROC curves also show that adaptive
control of the classification threshold on the RBF network output can reduce the number of false

alarms to zero.

Keywords: Radial basis function neural network, two-color infrared, sub-pixel missile signature,

regression tree, real-time.
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A RADIAL BASIS FUNCTION NEURAL NETWORK APPROACH
TO

_TWO-COLOR INFRARED MISSILE DETECTION

1. Introduction
1.1 Background

Surface-to-Air Missiles (SAMs) have been a significant threat-to aircraft since the Soviet-
made SA-2 Guideline and SA-3 Goa systems first appeared during the Vietham War. ﬁwse radio
frequency (RF)-guided SAMs and their successors can be detected from their active RF emitting
Target Acquisition (TA), Target Tracking (ﬁ), Target Illumination (TI), or Miésile Guidance
(MG) radars. However, related missiles that operate in the infrared (IR) portion of the
electromagnetic spectrum are difficult to detect due to the absence of such emissions. These
missiles passively home onto aircraft heated surfaces or engine emissions and ihus do not provide
aircraft with an indication that they are Being attacked. They present the greatest unseen threat to
civilian and military aircraft in areas of unrest around the world because they are too numerous and
easily hidden for accurate accounting by intelligence agencies.

The exhaust plume from the propulsion system is the only visible indication that an IR-
guided missile is in flight. The exhaust plume is brightest at launch during missile boost phase and
reduces considerably in the coast-to-intercept phase. Therefore, missile-warning systems have the
best chance of detecting such a missile at launch. Existing missile-warning systems use either Pulse
Doppler micro/millimeter-wave radar or ultraviolet (UV) sensors. Both technologiés are fairly

mature but are effective only at short ranges.




1;2 Research Motivation

Fighter aircraft (especially single-seat fighters) require missile-warning systems that occupy a
small amount of space and that aufonomousl}; detect threats, c.ieélarér them to the’ pilot, and initiate
countermeasures while maintaining a low false alarm rate. Cavity—backe'dﬂ spiral UV sensors are
typically -too bulky to be fitted to fighters. ’.Howevgr, the benefits of infrared sensing ar‘e being
investigated now that advances in focal plane array (FPA) technology have led to the greater
availability of staring infrared detectors. An FPA sensor typically consists of a ktwo-dimensional
mosaic of photo-detectors place-dr in the focal plane of an optical system. FPA sensors océupy less
space on an aircraft while providing longer-range performance than UV sensors and potentially -
providing greater reliability Ithan their predecéssors through eliminatioﬁ of mechanical scanning.
However, staring sensors impose a higher processing burden on threat detection algoritﬁms, and the
elimination of scanning means that a sensor mL;st respond over its entire field-of-regard
(Sanderson, 1996).

Infrared sensors are typically limited in their detection capability by the presence of heavy
background clutter, sun glints, and inherent sensor noise. However, typical threat environments also
include false alarm generators such as burning fuels, flares, exploding ordnance, and industrial sources.
UV-based missile warning systems have proven to be highly susceptible to these false alarms. Imaging
infrared sensors that offer multi-spectral detection are becbming more readily available for use in
missile-warning systems. Multi-spectral discrimination is potentially one of the most effective ways to
improve the performance of infrared missile-warning sensors, since for combustion sources such as a
missile exhaust plume the intensity in one band is significantly different than for a hot black body
source such as a sun glint. Thus false alarms can be reduced and_threats can be idenﬁﬁed by

simultaneously comparing images from different épectral bands in real-time.




Images collected by an FPA are similar to what a human eye might see at the selected
wavelength. Humans recognize objects based on a-priori knowledge and intu‘ition plus a potentially
large arﬁount of visual, auditory, and other data; Computers cannot replicaté human processing |
power and pattern fééognition capabilities. However, neurél networks use ‘brain-like’ algorithms
that can be trained to recognize pa;tems and objects? and are thus a promising technology for
detecting targets. ‘

Radial basis function (RBF) neural networks constitute one. such methodology. RBF neural
networks are oﬂeh motivated by the need to perform exact interpolation of a set of data points in a
multi-dimensional space. Exact interpolation requires every input vector to be mapped exactly onto
a corresponding térget vector. The radial basis function approach introduces a set of N ’basis
Sunctions, one for each data po{nt, which take the form ¢(}|x- x"||) where ¢(.) is some non-linear
‘function. The nth such function thus depends on the distance ||x- x"||, usually taken to be Euclidean
between x and x". The output of the mapping is then taken to be a linear combination of the basis
functions |

h(x) = Z ong(lix- X|). 1.D

.Both theoretical and empirical studies have shown that, in the context of the exact
interpolation problem, many properties of the interpolating function are relatively insensitive to the
precise form of the non-linear funqtion &0). However, the most common form of basis ‘function is
the Gaussién (Bishop, 1995)

@(x) = exp (-x2/202), ' (1.2)
where © is a parameter whose value controls the smoothness of the interpolating function.

-




| 1.3 Resea;'ch Objectives

The objective;s of this research are as follows:

1. Propose a method for detecting sub-pixei missile signaturés in ‘two-color infrared
images using a Gaussian Radial Basis Function (RBF) neural network. R

2. Evaluate the performance of this detection technique i)y training and testing the neural
network with data containing real missile and background signafures. ,

3. .Determine tﬁe near real-time effectiveness of the neural network in a real-world
missile warning system by applying previously unseen images to ‘the network and
obtaining Receiifer Operator Characteristic (ROC) curves.

1.4 Thesis Organization

Chapter 2 reviews background material necessary to understand the basic concepts a;nd
results of this fhesis. The concepts of target detection and recoénition are reviewed, followed by a
review of neural networks in g;eneral, radial basis function neural networks, and multi-layer
perceptron neural networks. The theory behind the paper that inspired this line of research is
~ presented along with a review of similarities and differences between radial basis function
networks and multi-layer perceptron networks. Finally, there is é brief description of the sensor
system and data collection that provided the input training and performance testing data for this
thesis. Chapter 3 explains the radial basis function neural network désign. Also, the concept of the
‘moving window transform’ method described in Chapter 2 is extended and its relationship to the
missile detection technique is explained. Chapter 4 presents thé results of training and testing the
RBF network and describes a near real-time aléorithm that significantly improves detection
effectiveness. Finally, Chapter 5 summarizes the research effort, provides conclusions, and offers

recommendations for further research.




2. Literature Review
2.1 Basic Concepts of Target Detection and Recognition

Pattern reeognition is the scientific discipline whose goa] is the classification of objects
into a number of categories or classes. These objects can be irnagee or signal waveforms or any
t);pe of measurement. In the case of an imaging' infrared FPA sensor, each pixel in thie image is an
object. The process of performing target detection or recognition in its basic form on such an image
generally consists of three stages: segmentation, feature extraction and classification.

Segmentation is the process of assignihg a label to each pixel in an image. For example, a
set of labels may be {background, target} or {mountains, rivers, trees, roads, ... etc}. The purpose
of segmentation is to reduce the number of pixels for further processing as well as to identify
multiple targets in an image and their locations. After an image has been segmented into potential
targets ané background, the contiguous groups of target pixels are further processed by the feature
extraction stage.

The feature extraction stage computes a number of features. The selection of features for
any pattern recognition technique greatly influences the performance of the detection system. The
desirability of minimizing the number of features to avoid the curse of dimensionality is well
known and will be discussed further in Section 2.7. Some example features are length-to-width
ratio, average temperature (in infrared) or complexity (ratio of border pixels to total blob pixels).
Once computed, the features are concatenated into a vector of numbers, which is then sent to a
classiﬁcaﬁon stage.

The final stage in basic pattern recognition is the classifier, which assigns a label to each
input feature vector. The labels could be {target, non-target} or {x% conﬁdence target, non-target}

for target detection, and {tank, truck, aircrafi, ... etc} for target recognition.




2.2 Neural Nefworké

Neural networks are pbwerful tools in non-linear statistical analysis. Artificial neural
netwdrks (ANN) are collections of mathematical models that emulate some éf the observed
properties of biological nervous éystems and draw on analogies with adaptive biological learhihg.
The key element of the ANN-paradigm is the novel structure of tl;e information processing system.
It is composed of a large number of highly interconnected processing elements that are analogous
to neurons, which are tied together with weighted-connections that are analogous to synapses
(Batelle, 1997). R

Learning in biological systems involve_:s adjustments to the synaptic connections that exist
between the neurons. Such adjustments are trué for ANNs as well, where learning typically éccurs
by example through training or exposure to a truthed set of input/output data, where the training
algorithm iteratively adjusts the connection weights. These connection wei.ghts store the knowledge
necessary to solve specific problems (Batellé; 1997).

‘ Although ANNSs have been studied since the late 1950s, it was not until the mid-1980s that
algorithms became sophisticated enough for general applications. The advantages of ANNs lie in
their resilience to distortions in the input data and their capability for learning. ANN' s often excel at
solving problems that are too complex for conventional technologies (e.g. problems that do not
have an algorithmic solution or for which such a solution is too difficult to ﬁnd). Some of the more
popular ANNs include the multi-layer perceptron network (which is generally trained with the
back-propagation-of-error algorithm), learning vector quantization, the radial basis function

network, as well as Hopfield and Kohonen networks (Batelle, 1997).




2.3 Radial Basis Function Neural Networks

The radial basis function methods introduced in Chapter 1 have their origins in techniq;xes
for perfonﬁing exact inter;.)olationrof a" set of data points in a multi-diménsional épace (Powell,
1987). However, an exact interpolatihg function for noisy data is typically highly oscillato&
(which is ﬁndesirable'), and since the number of basis fm;ctions is equal to the number of patterns in
the data set, the mapping function may be very complex and costly to evaluate for large dafa sets.

In contrast, radial ‘basis function neufal network (RBFNN) modelsA(Broomhead, 1988)-
provide a smooth interpolating funqtion in which the number of basis functions is determined by
the complexity of the mapping to be represented rather than by the size of the data set. Radial basis
function networks are non-parametrié models' in that they do not.have a-priori knowledge of the
underlying function that fits the data. Instead, the determination of suitable centres for the basis
functions becomes‘part of the training process, and each basis function is given its own width
parameter g;, whose value is also determined during training (i.e. the basis functions do not all have
the same o). Finally, bias parameters are included in the 1inear>sﬁm that compensate for the
diﬂ'erénce between the average valué over the data set of the basis function activations and the
corresponding average valye of the targets. With these changes to the exact interpolation formula,
~ the form of the RBFNN mapping is
‘ M

YX) =2 () + oo @2.1)
j=1

The axy.biases can be absorbed into the summation by including an extra basis function g whose

activation is set to 1 (Bishop, 1995).

-




For the case of Gaﬁssian Basis functions

(0 =exp (Clix- w720y, )
where x is the d-dimensional iﬁput vector with etements x; to x4, |
and y; is the vector that determines the center of basis function ¢ , with z; t(? Ha .

A neural network diagram as shown in Figure 1 can represent this mapping function.

basis
functions

. bias

o

Inputs

Figure 1.  Architecture of a radial basis function neural network
corresponding to Equation 2.1. There is only one hidden layer of
neurons and each basis function acts like a hidden neuron. The hidden
neurons compute the Euclidean distance between an input pattern and
the vector represented by the links leading to each neuron. The lines
_connecting the inputs to basis function ¢ represent the corresponding
elements, u; to 144 ,0f the vector ;. The weights ay; are shown as lines
from the basis functions to the output neurons. The activation of each
output neuron is determined by a weighted sum of inputs from all
hidden neurons. Biases are shown as weights from an extra basis
function ¢, whose output is fixed at 1 (Bishop, 1995). '




Algorithms for building RBF networks often consist of two stages. The ﬁrsf stage selecfs
the basis function centers 4 and radii o; , and the second stage estimates the weights ;. An RBF
center could be allocat;:d to each input péint “in a training 'set,- but without further modification ihis
scheme usually produces an overly complex modéi that over-fits peculiarities such as n.oise and
training point choice. In a linea;~ model with fixed basis functions and weights, one method for

controlling the complexity of an RBF network is to add a penalty term to the sum-squared-error

over the training set so that

k v om
E=2 -y + L2 o, ' @3)
=1 =1

where ¢, is the target value for output neuron / when the network‘ is presented with input vector x; .
When this combined‘error is optimized, large components in the weight vector are
iﬁhibited. This procedure is ridge regression or weight decay, and A, which controls the balance
between fitting the data and avoiding the penalty, is the regularization parameter. A small value for
A allows the modél to fit the data closely withou; causing a large penalty, while a large value for A
means that a close fit is sacrificed ir favor of larger weights. The parameter A has a Bayesian
interpretation, as it is the ratio of the noise corrupting the training data to the a-priori variance of
the weights. However, this ratio may not be available in a practical situation, Vand thus it is usually
hecessary to establish an effective value for A in parallel with optimizing the weights. This
determination can ‘be accomplished by using a model selection criterion such as Bayesian

information criterion, generalized cross-validation, leave-one-out cross-validation, or maximum

marginalized likelihood (Orr, 1999). ~




2.4 Multi-layer Perceptron Neural Networks

The multi-layer perceptron architecture is an extension of the perceptron developed by

'Rosenblgtt (1959) to cover a.variety of architectures designed-to model the human b;ain. I:Iée of the

" term perceptron generally refers to a single node. Mulﬁ-iayer perceptrons have more than one layer
of nodes with the nodes fully interconnected between layers. To teach the multi-layer i:erceptron
neural network to recognize a pattern, the weights and biases in the network are adjusted so that
application of a set of inputs produces the desired set of outputs. The most popular rule for training
a multi-layer perceptron is the back-propagation algorithm in which an iniﬁal guess is selected for
the weight vector that is then iteratively updated in the direction of the largest rate of decrease in
the output-to-input error (Bishop, 1995). - |

A multi-layer perceptron has three distinctive characteristics (Haykin, 1999);

1. The model of each neuron in the network includes a nonlinear activation function th;xt
is smooth (i.e. differentiable everywhere), A commonly used form of nonlinearity that
satisfies this reqﬁirement is the sigmoidal nonlinearity defined by the logistic function

y=1/[1+exp(-v] , ‘ 24)
where v; is the weighted sum of all synaptic inputs plus the bias of neuron j and y; is
the neuron output.

2. The network contains one or more layers of hidden neurons that are not part of the
input or output of the network but that enable the network to learn complex patterns by
extracting progressively more meaningful features from the input vectors.

3. The network exhibits high degrees of connectivity (determined by the syr;apses of the
nefwork). A change in the connectivity of the network requires a change in the

population of synaptic connections or weights.
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2.5 Automatic Target Recognition using a Multi-layer Perceptron Neural Network
Shirvaikar et al. (1993) showed that a back-propagation-trained two-layer perceptron with
45 hidden layer neurons was efféctive at aﬁtorﬁaﬁc target ;ecogniﬁon in high clutter tﬁerma.l
iﬁfrared imagery. The feature extraction stage was eliminated and raw gray-levels were utilized as
- inputs to the network. However, ;mlike the usual approach in which an entire i;nage is the input to
the neural network, this method used the neural network as a moving window transform. Although
the authors used the word convolution to describe their technique, the moving winciow transform

method was (in effect) a sliding of the neural network input layer over the entire image (Shirvaikar,

1993).

Weighted
Interconnects

Figure 2. Depiction of the moving-window neural network concept
(Shirvaikar, 1993). The input layer of the neural network is slid over an
entire image, 128x128, 256x256, 512x512 ... etc, such that the image is
divided into image chips, with each chip corresponding to the input
layer of an individual neural network. The outputs of the neural
networks are then combined produce a response that maps object
locations from the spatial domain to the probability density domain.
The outputs are high for target pixels and low for background pixels.
Thus the response maps can then be thresholded to various degrees to
mitigate false alarms in classifying the pixels as targets or background.

11




2.6 Relations.hip bétween Multi-layer Perceptron and Radial Basis Function Networks

Multi-layer perceptron'(MLP) and radial basis function (RBF) neural networks are the t§vo
mosf commonly used types of feed-forward networks and they flave more in commoﬁ than most
neural network literature suggesfs. Their fundamental difference is the way in which their hidden
units combine values coming from preceding layers in the ne;work: ML'Ps use inner products,
while RBFs use Euclidean distance. There are also differences in the cﬁstomary .methods for
training MLPs and RBF networks. However, most methods for training MLPs can also be applied
to RBF networks (Sarle, 2000). | |

The MLP architecture has generally been the more pdpular for applications involving a
large number of dimensions. The inputs are t);pically fully connected to the first hidden layer and
each hidden layer is then fully connected to the next, with the last hidden layer fully connected to
the outputs. Each layer typically uses a linear combination function. MLP; can also have skip-layer
connections and direct connections from iﬁputs to outputs. RBF networks usually have only one
hidden layer for which the combination function is based on the Euclidean distance between the
input vector and the weight vector (Sarle, 2000).

RBF networks usually do not have a term equivalent to the bias term in an MLP. However,
some types of RBFs have a width associated with each hidden unit or with the entire hidden layer,
which instead of being added into the combination function (like a bias); is divided into the
Euclidean distance. A similarity between RBF networks and MLPs is apparent if the combination
function is treated as the square-of-distance divided by the width, in whiéh case the familiar exp or
softmax activation functions produce members of the populér class of Gaussian RBF networks

(Sarle, 2000).

12
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Some important differences are as follows (Bishop, 1995):

1. The hidden unit representations of the MLP depend on wgighted linear summations c;f
the inputs transfonvnedr by monotonic activation functions;. Thus the acfivatiori 6f a
hidden unit in an MLP is constant on surfaces that consist of parallel (d-1)-dimensional
ilyper-planés in d-dimensional input space. In‘contrast, the hidden units in an RBF use
distance to a prototype vector followed by transformation with a (usually) localized
function. The activation of a radial basis function is therefore constant on iconcentric
(d-1)-dimensional hyper-§pheres' (or more generally on (d-1)-dimensional hyper-
ellipsoids).

2. An MLP forms a distributéd representation in the space of activation values for the
hidden units, since for a given input vector many hidden values typically contribute to
the deter;rlination of the output value. During training, the functions represented by the
hidden units must be such that when linearly combined by the final layer of wéigh.ts,
they generate the correct outputs for a range of possible inputs. The required
interference and cross-.coubling between the hidden units results in a highly nonlinear
network training process with problems of local minima or nearly flat regions in the
error function, which arise from near cancellations in the effects of different weights.
Such cancellétion can lead to very slow convergence of the training procedure, even
with advanced optimization strategies. In contrast, an RBF network with localized
basis fuﬁctions forms a representation in the space of hidden units that is Jocal with

respect to the input space, because for a given input vector only a few hidden units

typically have significant activations.

13




3. An MLP often has many layers of weights and a complex pattern of connectivity such
that not all weights in any gi;/en layer are present. A variety of different vactiyation
functions may alsé be used within the same network.. An RBF Aétwork, on the otbherr
hand, generaily has a simpler architecture consisting of two layers of weights in which
the first layer contains the parameters of the basis functions and the second ’layer forms
the linear combinations of the activations of the basis functions that generates thé
outputs,

4. All the parameters in an MLP are usually determined at the same time as part of a
single (global) training strategy .involving supervised training. However, an RBF
network is typically trained in two stages: the basis functions are determined first by
unsupervised techniques using input data alone, and the second layer weights are
subsequently found by fast linear supervised methods. .

2.7 Network Selection ‘A

A Gaussian RBF network was selected for analysis in this thesis, as RBF networks have

several advantages over MLPs. First, RBF networks can model any nbn—linear function using a-

single hidden layer, which removes design decisions regarding the number of layers ngeded.

Second, the simple linear transformation in the output layer can be optimized fully using traditional

linear modeling techniques, which are fast and do not suffer from problems such as locai minima,

which affect MLP training (StatSoft, 2000).

The radial functions used by RBF networks are also preferable to the logistic or
polynomial functions used by other methods, as their response decreases (or increases)
monotonically with distance and radially in all dimensions from a central point. The center, _

distance scale, and precise shape (Gaussian in our case) of the radial function are all parameters of

the model and are all fixed after the first stage of training.




An RBF network is non-linear if its basis functions can move or change size or if there is

more than one hidden layer. This thesis focuses on a single-layer network with Gaussian radial

functions that are fixed in position and size, thus avoiding the computationally expensive non--

linear graa’ientk descent methods typically employed‘ in explicitly non-linear networks (Orr, 1996).

RBFs are moAre sensitivé than MLPs to the curse of din;ensionality and have greater
difficulties if the number of input features is large, since each additional input feature in a network
adds another dimension to the space in which the training data cases reside. Thus, there must be
sufﬁcientv training points to populate an N—diménsional space densely enough to determine its
structure. The number of points needed for proper population grows- very rapidly wi&
dimensionality. For eiample, if an input variable fs divided into M divisions, then the total number
of cells is M, and this factor grows exponentially with the ;iimensionality of the input space
(Bishop, 1995). Since each cel.l must contain at least one data point, this result implies that the
qﬁantity of training data needed to specify the mapping also grows exponentially. However, the
number of features is small for this thesis, whereas the amount of data is large. |
2.8 Regression Trees

Regression trees can both estimate a model and indicate which components of the input
vector are most relevant for the modeled relationship. The basic idea of a regression tree is the
recursive partitioning of an input si)ace in half, and approximating the function in each half by
taking the average of the output value of the data in each half. Each partition is along one of the
dimensions of the input space.‘ Thus dimensions that carry the most information about the output

tend to be split earliest and most often.
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The input space is recursiveiy divided into hyper-rectangles (as it may involve more than
three dimensions) that enclose all the patterns in a pmicular node. The nodes are organized in a
binary tree, where each Branch is detérmined by the dimension and bbmd@ tl{af together
minimize the residual error betweeﬁ model and data. ﬂus a regression tree creates a hierarchical
structure whe‘re the higher the node the coarser the-feature captured by the node. “ ,

Using the tree analogy, the apex node corresponds to capturing the coarsest feature, which
means that it contains all the input- pattemé in the data §et. Progressing down the tree, each child
node then has a subset of the input patterns of its parent, thus capturing finer and finer features
until a terminal node (which contains a predefined minimum number of input patterns) is reached
and cannot be split further (Orr, 1999). | |

Combining trees and RBF networks was first suggested by Kubat et al. (1995) in the
context of classification rather than regression. Essentially, each terminal node of a regression ;Iee
contributes one hidden neuron to the RBF network. The center of .the basis function is the center of
the hyper-rectangle associafed with the node, while the radius is the product of the half-width of the
hyper-rectangle and a predefined scaling factor. Thus the tree sets the number, positions, and sizes
of all potential RBFs in the network (Orr, 1999).

Using this method, model complexity is controlled by the amount of tree pruning and
scaling of the RBFs relative to the hyper-rectangles. There is no discussion by Kubat (1995) about
how to control scaling and pruning to optimize model complexity for a given data set. However, an
alternative to treating every terminal node of the tree as an RBF is to have the regression vtree
generate a set of RBFs from which the final network is selected. The burden of coﬁtrolling model

complexity is thus shifted from the tree regression to the model selection criterion introduced in

- Section 2.3 (Orr, 1999).
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2.9 Air Force Research Laboratory’s Spectral Infrared Detection System

Dual-band infrared passive missile warning sensors have been under development at the

Air Force Research Laboratory (AFRL) for many years where the objective has been to provide

aircraft with cost-effective and robust detection and tracking of surface-to-air threats. The Spectral

Infrared Detection System (SIRDS) test bed is the latest sensor developed by AFRL to evaluate and

compare various spectral threat detection algorithms.. The SIRDS optical sensor provides a 90° by

90° field of view to a 256 by 256-element FPA together with an integrated two-color filter wheel. -

The filter wheel allows the sensor to collect images that rapidly alternate between two bands in the
infrared spectrum. The value of multi-color discrimination has been demonstrated for scanning
sensors, particularly in heavy clutter at short ranges (Sanderson, 1996). Figure 3 shows a simplified

block diagram of the sensor architecture.

-

Filter
Wheel
Sensor
i — " Gamma 2
il . Processor. Disc Array
Motor & ‘
‘| Encoder v
System
. Interface ' Display
Controller —

F igure 3. SIRDS Test-bed block diagram (Montgomery , 2000).
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The two spectral bands used by the SIRDS and the subsequent target/background data
collections are designated simply red and blue as shown iﬁ Figure 4. The widths of the bands are
“designed so that the photon flux is approximately-equal in each» band. For combustion sources suc;h as
a rﬁiésile exhaust plume, the intensity in tﬁe blue band is significantly lower than in the red _band.
Conversely, for a ho; black body source such as a sun glirit, the reverse intensity relationship is true,

thus permitting target discrimination by comparison of the intensities and intensity differences in each

band (Montgomery, 2000).

4.57-4.71 um

Threat Signature

3.52-4.03um

3 3.2 3.4 3.6 3.8 4 4.2 44 4.6 4.3 5
Wavelength [im]

Figure 4. Pass-bands of the SIRDS sensor, together with target and
background spectra. The red band lies in the region of the CO, v; band, -
and the infrared signature of a missile in the powered phase is brightest
in the neighborhood of this band at 4.3um. The blue band lies in the
atmospheric window just below the CO, v; band (Montgomery, 2000).
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The bands occupy four quadrants on the filter wheel such that in a single rotation of the wheel

~ the FPA collects images in the order — red! / bluel / red2 / blue2. The responses in the red] and red2

bands are fot identical, and neither are they in the bluel and blue2 bands due to material defects such

as scratches and dust that accumulate on the different quadrants over time. The SIRDS data is

organized in the same way as collected by the FPA. However, because the filter wheel to be used with

a future version of the sensor consists of two regions, one for red and the other for blue, data from the

red] and red2 bands are treated as coming from the same band, as is data from bluel and blue2. The

current sensor can collect data at up to a 140 Hz frame rate. However, the background data used for

training was collected at a 10 Hz frame rate during a series of test flights on 28 Aug 99. The map in

Figure 5 shows the flight paths of the SIRDS sensor over populated areas and water and coastal

(A% AN
| RO
A

iy,

regions along the Gulf coast and South
Atlantic coast (DL1 and DL2), and inland

over South Carolina (DL3), North Carolina

< (DL4), and Tennessee, Virginia and

Kentucky (DLS5). Background data for

79 - training the RBF network is from DL1 and
Y

from the first legs of the DL3, DL4, and DLS5

data collection flights. Missile data is from

| separate flight tests (SD6 and SD8) over a-

static missile launch at the Eglin AFB
weapons testing range. SD6 data is used to

train the RBF network, while SD8 data is

1 used to test the network and the overall

detection algorithm.

Figure 5. SIRDS data collection flight paths (Sanderson 1999).
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3. Neural Network Design and Modeling

3.1 Introduction |

This chapter presents the design of the .Gaussian‘ radial basis function neural network and
the methoddlégy used to analyze its effectiveness. Section 3.2 discusées the overall RBF network
design and links this design t;) the radial basis function neural network and regression tree methods
introduced in Chapter 2. Section 3.3 discusses the scope of the research, including the research
objectives, and time and resource limitations. Section 3.4 discusses the design and optimization of
the RBF network. Section 3.5 discusses the methods used to generate responses to input stimuli
using the RBF network. Finally, Section 3.6 discusses the overall missile detection system concept,
links the RBF network training to its prediction capability, and considers an algorithxﬁ that applies
images to the neural network and manipulates the output to determine probable locations of
missiles.
3.2 Radial Basis Function Network Overview

The RBF network is designed using functions discussed by Orr (1999) for non-parametric
regression using radial basis function networks. The methods included in the toolbox employ
various model selection criterion and techniques such as forward selection, ridge regression, and
regression trees to control model complexity and generate RBF centers and radii. This section
concentrates on regression trees and leave-one-out cross-validation model selection criterion, as
these techniques were chosen for this thesis. For descriptions of the other methods and alternative

model selection criterion, see Orr (1996).
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3.2.1 Generating the Regression Tree
The apex node of the tree is the smallest hyper-rectangle that contains all p cases of the

training input vector {x;}". Its size s, (the half-width) and center ¢, in each dimension k are

5= 0.5 (max(x) - min(xs) ) h G.1)
¢ =0.5 (max(xx) + min(x) ). (2)
ieS ieS

The apex node is then split into a left and right subset (S, and Sg) on either side of a boundary (b)
in one of the diménsions such that

| Su={i:xx<bh} ’ 33)

Se={i:xx>b}. (3.4)

The mean output value on either side of the split is

<> =1lp 2 y; (3.5)
iESL.

<y>=1lpr L yi, (3.6)
ieSr

where p; and py, are the number of patterns in each subset. The residual square error between model

and data is then

Ek b)=1p (Z0i-<9>) + Z0i- o) )- _ G.7)

ieS, ieSy

The split that minimizes this value over all possible k dimensions and & boundaries is used
to create the child nodes. These children then become theK apex for their own trees and are split
recursively in the same manner until a node cannot be split without creating a child containing
fewer patterns than a predefined minimum number p,,,,-,-,, which is a parameter of the method. Since
the size of the regression tree does not detérmine the model complexity, there is no need to prune

the tree as is normally required in recursive splitting methods (Orr, 1999).
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3.2.2 Generating RBF's
Each node in the tree is associated with a hyper-rectangle of input space having a center ¢
and size s. To convert a hyper-rectangle into a Gaussian RBF, the center of the hyper-rectangle is

used as the center of the RBF, and its size is multiplied by a scaling constant o to make the RBF

radius r = as. The scaling constant is also a parameter of the method (like'minimum-members) and
is the same Qalue for all nodes (Orr, 1999).
3.2.3 Selecting RBFs

In the standard methods for subset selection, RBFs generated by the regression tree are
treated as an unstructured collection with no distinction between RBFs associated with diﬁ‘erent |
nodes. However, infuition suggeéts that the best order to consider RBFs for inclusion in the model
is large ones first and small orlles last (to synthesize coarse structure before fine details). This
‘intuition suggests searching for suitable RBFs by traversing the tree from top to bottom in some
form of breadth-first search. However, the size of a hyper-rectangle (in terms of volun;e) on one
level is not guaranteed to be smaller than the size of all the hyper-rectangles in the level above
(besides its paren;.). Thus the algorithm has a measure of backward elimination as well as forward
selection in order to dynamically adjust the set of suitable RBFs by replacing selected RBFs with
their children. This procedure avoids the situation where a parent RBF blocks selection of any of its
chilaren who would have been chosen in prefefence had they been considered first (Orr, 1999).

The algorithm depends on the concept of an active list of nodes. At any given moment in
the selection process, only these nodes and their children are considered for inclusion or exclusion
from the model. Every time RBFs are added or deleted from the model, the active list expands by
replacing a node with its children. Eventually, the active list reaches the terminal nodes and the

search is completed.
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The steps of the algorithm are described in greater detail as follows (Orr, 1999):

1. Initialize tﬁe active list with the apex node and the model_with the RBF ass_ociated with
.this node. : ' _ v : L
Consider, for all non-terminal nodes on the active list, the effect (o.n" the model
selection” criterion) of adding both or just one of the’children RBFs (three possible
modifications to the model). If the parent RBF is already in the model, consider the
effect of remoQing it before adding one or both children RBFs, or of just removing it (é
further four possible modifications).

Choose the modification that most decreases the model selection criterion. The total
number of possible modifications to the model is somewhere between tﬁree and seven
times the number of active non-terminal nodes, depending on how many of their RBFs
are already in the model. The choice then updates tl;e current model and removes the
node involved from tile active list, replacing it with its children. If none of the
modifications result in a decrease in the model selection criterion, then the algorithm
chooses one of the active nodes at random and replaces it with its chfldren, but does

not alter the model.

Return to step 2 until all the active nodes are terminal nodes.
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3.2.4 Model Selection Criteria

Model selection criteria are estimates of prediction error, which is an estimate of how well
the vtrained model performs on future (unseen) inputs. The best model is thé one Whose estinmated
prediction error is least. The methods in the software package by Orr (1999) can be configured to
use a variety ;>f different model selection criteria'. Four of these criteria are based on modifying the -
training set sum-squaréd-erro_r to take into account the effective number of parameters in the
model. They are: Unbiased Estimate of ‘Variance (UEV), Final Prediction Errof (FPE), Genéralized
Cross-Validation (GCV), and Bayesian Information Criterion (BIC), and are available to all
methods. Two other model selection criteria'are also offered as altemativeé in certain methods:
Leave-One-Out cross-validation (LOO) and Maximum Marginalized Likelihood (MML). Only
LOO is discussed in this chapter; see (Orr‘, 1996) for descriptions of the other model selection
criteria. ‘

If data points are numerous, the data set can be partitioned in several different ways and the
prediction error averaged over the different partitions. This pfocedure is the basis of leave-one-out
cross-validation, where p pafterns are split into a training set of p - 1 and a test set of 1, and the
squared-error on the lefi-out pattern is averaged over the p possible ways of partitioning the set.
The advantage of this criterion is that all the data can be used for training; none has to be held back
for testing. An édvantage of LOO for linear models such as RBF networks with fixed centres is that
the prediction error can calculated analytically (Orr, 1996) as

<dLo0> =y' P (diag®))*Py/p, - (3.8)
:where P is the projection matrix,

. P=L-HA'H', (3.9)
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H is the design matrix,

_¢0(X1) $i(x1) BAX1) Pn(X1)

H = | dl(x) ¢lx) do(x) .............. Pn(%2) (3.10)
) %) %) hx) |,
A”! is the variance matrix,
A =(HH +A), @I

andy=[y; y;... y,,]T is the vector of training outputs.
All the regularization parameter elements of the diagonal matrix A are zero for our case,
since the selection process limits model complexity. Once model selection is complete, the network

weights are calculated by solving the equation

w=HH'Hy. (3.12)
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3.3 Scope of Research

The objectives of this research are as follows:

1.. bepose a methoci for detecting sub-pixel missile signatures in two-coior infrared
images using a Gaussian Radial Basis Function (RBF) neural network.

2. E_valuate the performance of this detection tech'nique by training and testing the neural
network with data containing_ real missile and background signatures.

3. Determine the near real-time effectiveness of the neural network: in a real-world
missile warning system by applying previously unseen images to the network and
obtaining Receiver Operator Characteristic (ROC) curves. |

To meet the research objectives and sta& W1thm time and resource constraints, the scope of the
research was limited to the areas detailed in the followifxg paragraphs.

Eighteen gray:level intensities were initially used as the baseline feature set to cover the
nine pixels from each of the two color bands of the SIRDS sensor (i.e., 3 by 3 element square
windows encompassing the pixel containing the missile in the red andrblue bands). However, a
smaller set of features for training the RBF network was produced from combinations of these
eighteen pixel values to avert the curse of dimensionality.

Only a subset of the data collected by the SIRDS sensor was used to train the RBF network
due to the immense amount of data involved and the processing and memory limitations of
computers. There are more than 7,000 distinct 3x3 windows in a single frame of SIRDS imagery.
Therefore, a decision vwas made to only consider those 3x3 cases obtained from selected 150x150

regions in two frames (consecutive red/blue pairs) from each of the background data sets.

-
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Each pair of red and blue band 150x150 regions provided 2500 training cases because there

were 50x50 distinct 3 by 3 image chips in each region. The training set was hand-selected by

. viewing frames from each data set and identifying 150x150 regions that encompassed significant

background textures in thé images. The background training cases obtained this way numbered

.

10,000, which when combined with the 2,000 cases already obtained from the missile data set

produced a 12,000x4-element input to the RBF network training algorithm. An overview of the

data extraction methodology is shdwn in Figure 6.

DL2
A (1)

)

//‘——:
2500x4 element v
feature matrix
per image pair 10000x4 element matrix
DL2 of background features

DL3
)

DL3
2)
Dataset = DL2 (Eglin beach),
DL3 (South Carolina),
DL4 (North Carolina), and » i
DLS5 (Virginia) ' ' |

Figure 6. Data extraction method for the feature set.




3.4 RBF Network Design Parameters

There are three main parameters in the design of an RBF network using the Orr (1999)

Matlab functions. They are the model selection criterion, the minimum number of. members -

allowed in a node p, (which controls the depth of tﬁe regression tree), and the scaling parameter o

(which determines the relative size between hyper-rectangles and RBFs).

Leave-One-Out cross-validation (LOO) was chosen as the model selection criterion and

- was used with the regression tree method (rbf rz_I) for selecting suitable RBFs. This method first

models the data with a regression tree, then uses the nodes in the tree to determine the centers and
radii of a set of RBFs. A subset of these RBFs is then selected by considering large RBFs before
smaller ones and minimizing the prediction error through LOO.

The minimum number of cases allowed in a node p,,;, has some effect on performance, and

, expenmentatlon must be performed with different sets of trial values to find one that works well on

a given data set (Orr, 1999). The default is a single value of 5, but any value or collectlon of values
down to 1 may be selected. The program grows a separate regression tree for each value of py,
entered, and each tfee gives~rise to a separate -set of unscaled RBFs. A regression tree for pp, = 1
takes much time to grow if presented with a large data set because the tree must keep splitting until
there is a minimum of one case of any dimension of the feature vector in a node.

The scaling parameter « | has a significhnt effect on method Vperformance, and
experimentation must also be performed toq find a value that works well. The default has two trial
values, one and two. However, any range of scale values can be entered, leaving the program to
choose the winning n;etwork with the lowest model selection criterion score. Experience shows that

if the input space has a large number of dimensions, then the best scale values are usually larger

than these (Orr, 1999).
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3.5 Feature Saliency
Feature saliency involves finding the features or combinations of features that carry the
most information and which are thus most relevant to the target recognition solution. Feature

‘ saliency plays an important role in reducing complexity by reducing the dimensionality of the input

. 1

data.
3.5.1 Input Pre-processing
Each training case is extracted from the flight-collected data sets such that there are

eighteen input values per case which correspond to the pixel intensities in consecutive color bands

as follows:
rllri2rl3 bl1 b12 b13
Reii chip = 121122123 Blue chip = b21b22b23
31132133 b31 b32 b33 (3.13.)

Initially, all eighteen values were interleaved into a row such that the raw red and blue band

intensities from consecutive frames are the components of a vector -

v =
. [r}1 b1l r33 b33 rl2 bl2 r32 b32 r13 b13 r31 b31 r21 bi2 r23 b23 r22 b22] (3.14)
The mean intensities in each band are then subtracted from the raw intensities, and the resulting
value is divided by the maximum intensity in each band to normalize the data.

This eighteen-dimensional vector was difficult to handle computationally, therefore the
number of dimensions needed to be reduced. One of the simplest techniques for dimensionality
reduction is to select a subset of the inputs and discard the remainder. However, ail the inputs
carried useful informétion, so a better method was to find combinations of the inputs that
distinguished the point-source characteristics of sub-pixel missile signatures from the .more

uniform characteristics of background signatures in small (local) regions of an image.
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3.5.2 Z scores for Dimensionality Reduction

Z scores are a special application of transformation rgles and one method _of combining
multiple inputs into a single ;statist»i(':. The Z score of an item is a statistical measure that quantities
héw far and in which direction that item deviates from its distribution mean, expressed in units of
- its distribution standard deviationn. The mathematics of the Z score transformat'ion are sﬁch that if
every item in a distribution is converted into its Z score, the scores have a mean of zero and a
standard deviation of one. Z scores are especially informative when the distribution to which they
refer is normal, as ﬂle distance between the mean and Z score is a fixed prbportion of the area
under the curve. The formula for converting a given value X into its corresponding Z score in a
distribution is (Hoffman, 2000) |

Zo=(X—p)/ 0. ‘ (.15)

Two variations of the Z score wére used for reducing the number of dimensions in the
. input data. The Z score used by Baxley et al. (2000) was applied to the data from red band image
chips as follows:

Zp= (8 *122) / (rl 1+r12+4r13+21+123+13 1+r32+133) (3.16)

The same formula was applied to blue band image chips.
3.5.3 Z score from Double-Gated Filtering Methods

The‘ second Z-score-like statistic came‘from double-gated filtering methodology (Sevigny,
1994). In double-gated filtering, an image is scanned with 2 moving window that consists of two
concentric sub-windows. The inner sub-window (the target gate) includes the center element plus
an optional number of rings of .pixels surrounding it. The outer sub-window (the background gate)
incorporates pixels that lie on the perimeter of the moving window plus an optional number of
inward rings. Using the Holmes methbd (Morin, 2000), the means and standard deviations of the

pixel gray levels are evaluated for the two gates such that the output
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O(x, y) = [ur - pus] / GB‘ (3.17)

corresponds to the center of the movi.ng window, where HT is thé mean of the pixels in the target
» gaié,ﬂ ug is the ﬁlean of the pixels in tﬁe background'gate, gnd op is the standard deviaﬁon of the
pixels in the background gate. In order to use this method, each image chip is considered to‘have an

inner sub-window with only the center pixel inside it and an outer sub-window with the remaining

eight pixels surrounding the center as follows:

rll r12 rl3 bll bl2 b3
Red chip =| r21| r22 (123 Blue chip =| b2l b22| b23
r31 r32 r33 : b31 b32 b33 (3.18)

The second version of the Z score is then calculated for the red and blue band chips using the
Holmes parameter as follows:

Zy (red) = 122 —mean(rl1 r12 r13 r21 r23-r31 r32 r33) (3.19)
standard deviation(r11 r12 r13 121 r23 r31 r32 r33)

* 3.5.4 Principal Component Analysis

Principal component analysis (related to the Karhunen-Loéve transforma?ion) is one

popular linear dimensionality reduc;tion procedure for visualizing a multi-dimensional data space.
“In practice, it proceeds by first computing the means of the data values in >each dimension, then
subtracting off the means from the values. Next, the covariance matrix is calculated, and )its
eigenvectors and eigenvalues are found. Each of the eigenvectors is a principal component.
Dimensionality reduction is then obtained by retaining the eigenvectors corresponding to the M
largest eigenvalues and projecting the data set onto these eigenvectors to get the compohents of the

transformed vectors in the new M-dimensional space (Bishop, 1995).
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The technique is illustrated schematically in Figure 7 for the case of reducing data in two-
dimensions to one dimension.

-

A
D %)

X1

Figure 7.  Schematic illustration of principal component analysis
applied to data in two dimensions. In a linear projection down to one
dimension, the optimum choice of projection, in_the” sense of
minimizing the sum-of-squares error, is obtained by first subtracting off
the mean, p,, of the data set, then projecting onto the first eigenvector
u;, of the covariance matrix (Bishop, 1995). . '

This method can be regarded as a form of unsupervised learning since it relies on the input -

data itself without reference to the corresponding target data. However, this neglect of target
information implies that the result can also be significantly sub-optimal in preserving the

discriminatory capabilities of the data as shown in Figure 8.
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X2

Figure 8. Example of principal component analysis resulting in

discriminatory information being discarded. Dimensionality reduction

to one dimension using principal component analysis projects the, data

onto the vector u;, which would remove all ability to discriminate the

two classes C; and C,. Full discrimination capability is preserved,

however, if the data is projected onto the vector u, instead (Bishop,

1995).
3.5.5 Automatic Relevance Determination

The program rbf rt_1 by Orr (1996) has a feature that is not shared by any of his other

RBF network training methods, but which is similar to performing a principal component analysis.
The rbf rt I method monitors which dimensions of the input data are first to be split and how
often each dimension is split during tree growth. These (tree) splitting statistics provide a form of
automatic relevance determination, since they identify dimensions that are seldom split (or not

among the first-to be split) and which thus carry less information than the dimensions that are

frequently split.
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36 RBF Network Prediction

Once the RBFvnetwork is trained and its centers, radii, and weights are returned, the
network is vuAsed to make prédictions, i.e. to calculate the éfobability of a rﬁissilé in any part of an
image.“ The first task is rto build a design matrix H. The term design matrix irnpliéé deliberate
choice or design of the inputs of the training set; howeve;r, the inpuis are usually not controlled in
practical applications of neural networks (Orr, 1999).

For models that are linear with respect to the weights w;,
o |
=2 w hy(x), | (3.13)
=1 .

wh¢re for our case of Gaussian basis funétioné,
h(x) = exp(H(x—¢)* /1) . (3.14)"
The system of linear equations to be solved (in a least squares senst) is
h(x)w; + h(xws + ... + Ba(X)Wn =1,

hl(X2)w1 + hz(Xz)WZ +...+ hm(X2)Wm =) ’

“s 9

| h(x)wi + (X )wa + ... + B(X)Wim =Y . (3..15)
Here the design matrix H consists of the coefficients on the leﬁ-h;md side of the system of
equations, i.e., H; = h(x;). Orr’s (1999) rbf dm Matlab function calculates H using input data, the
RBF centers, and the RBF radii. The default configuration for rbf dm implements Gaussian radial
functions of the form exp(—zz), where z is the distance vector. However, alternative radial functions

include Cauchy, multi-quadratic, and inverse functions. Matrix-multiplying H with the weight

vector w (f = H * w) then yields a predicted output from the RBF network.
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3.7 Overall Missile Detection Concept
- The parameters of the RBF network combined with the rbf dm function enable prediction

of thveﬂpresence of missile-like signatures as shown in Figure 9.

Training Data:
) . Ground-truthed data Given X,
Known yi,
Normalize the inputs. &
Apply Global Thresholding. B Tree Regression
Sensor Find pixels above threshold.
’ Produce a feature vector, X,, ¢
/ from the eligible image chips. Model Selection -
Calculate the [« ¢ Determine RBF
Design Matrix r centres ¢, radii r,
H < and weights w.
! "
Predict the o
output
yv=H=*w
Generate a » Pass possible target
. probability ~ locations to a
density map tracking algorithm
from the outputs >

Figure 9. Missile detection algorithm block diagram. First, ground-
truthed data is used to train the RBF network and obtain centers, radii,
and weights in the feature space. Then red and blue band image chips
are input to the RBF network in the same form as used for training.
Global thresholding of the normalized inputs enables the algorithm to
run in near real-time by narrowing the field of interest of the RBF
network to only those image chips around pixels above the
predetermined threshold. The output of the RBF network is the center
pixel of each 3 by 3 image under test, but in a new (probability density)
mapping in which the pixel values may vary between zero and one
depending on how much (or little) they resemble background or
missiles.
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4 Results and Analysis
4.1 Introduction

_This Chapter discusses the simulations and results of testing the Gaussian RBF neural
" network and missile detector conﬁéuration describedrin Chapter 3. Section 4.2 presents plots of
some of the 'raw images that were used to train-and test the RBF network and discusses th'e
characteristics of the features selected for training the RBF network. Also presented are sample
plots of the data set after principal component analysié. Section 4.3 presents the RBF network
parameters obtained from the regression-tree/leave-one-out cross-validafion training process and
discusses their significance. Section 4.4 discusses results from testing the RBF network with
previously ‘unseen’ missile data. Section 4.‘5 describes the design ‘of a near real-time missile
detection.algorithm to complement the RBF neural network, and it discusses the results of applying
this algorithm to the test data. Using Receiver Operating Characteristic (ROC) curves, Section.4.6
assesses the performance of the RBF network-based detection‘~ algorithm. Finally, Section 4.7
summarizes the results presénted in Chapter 4.
4.2 Training Data

Several pre-processing procedures were used on the training data to find one that could be

performed in a timely fashion by the regression tree building and RBF network selection

algorithms. Although the computer used was a 128-megabyte RAM Pentium III 450MHz PC, the ‘

problem lay in the inherently memory-intensive tree building process. The depth of the tree was
dependent on the parameter entered for the minimum number of cases allowed in a node.
Experimentation determined that small values of this parameter (i.e., one to ten) could only be used
with relativély small data sets of a few hundred cases. Large data sets required (minimum case)
parameters of 100 or greater, because otherwise the computer had insufficient memory to cbmplete

the tree regression.
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The scaling parameter did not affect the depth of the tree, but greatly influenced the
ﬂumbér and locations of RBFs selected. When‘ the number of d%mensions was large, such as when
all eigliteen raw pixel intensities V\;ere considered as features, the optimal RBF scaling parameter.
was found to be ten to 'twenty times the size of the hyper-rec't;mgles in the regression tree. This
* result was only obtained for a small subset ot: the data, however, since the compl‘lter was never able
to build a complete tree for the entire eighteen—dimenéional data set. The scaling parameters that
worked with the available computing resources changed again when the eighteen dimensions were
reduced to the four chosen features. Scaling factors of two to five were found fo work better when
the number of dimensions was small. The regression tree algorithm requires setting applicable
values for these two parameters before initiating the process: Here 100 minimum members and a
scaling factor of two were used.

4.2.1 SIRDS Imagery

The uimagery used in this research was collected by the SIRDS 256 by 256 focal plane
array sensor. The images were collected as a series of redl, bluel, red2, and blue2 frames because
the color-wheel consisted of four quadrants. In the- miééile data set, the featureless desert
environment of the test range resulted in the missile being the only significant IR energy source in
the scenes. Also, there was only one missile in each scene, so the missile-bearing pixels were
always the ones with maximum intensity in ‘each frame. Image chips were then extracted By
centering a 3 by3 window on the maximum intensity pixel and using the pixel values contained in
the window for calculating the features. Figures 10 and 11 show frames in the red 1 and red 2

bands, and Figures 12 and 13 show frames in the blue 1 and blue 2 bands. The view in all four

figures is straight toward the ground. .
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Figure’10. Missile scene in the red 1 band. The black arrow points to
the missile location in the scene. The scene is mostly featureless except
for the missile, since the image was collected over a desert test range.

Figure 11. Missile scene in the red 2 band. The image from the second
red quadrant is practically identical to the image seen in the previous
figure from the first red quadrant. Therefore, the two quadrants were
regarded as the same color band, which simplified the detection
problem and allowed the use of fewer features.
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Figure 12. Missile scene in the blue 1 band. The image in the blue
band displays more texture than in the red band due to the abundance of
black-body sources around the missile such as sand, which absorbs and
re-radiates energy from the Sun at this particular wavelength.

Figure 13. Missile scene in the blue 2 band.
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As expected, images in the red bands were mostly featureless (except for the missile) due
to the lack of any other“ combustion source on the test range. Images in the bllue bands displayed
more texture rbecéuse black body sources such as cléuds and hot sand were present in the scene.
Figure 14 shows four consecutive intensity plots from one rotation of the color-wheel (i.e.
consécutive redl, bluel, red2 and blue.2 frames). These plots show that there is little difference
between image§ from the redl and red2 quadrants and bluel and blue2 quadrants. Thus the four-
quadrant nature of the color-wheel was ignored in favor of treating the two red quadrants as one red

band and the two blue quadrants as one blue band, thus reducing the complexity of the problem and

also reducing the number of features needed to characterize the data.

Blue (i)

Figure 14. Intensity plots of a missile scene in each color band.
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As discussed in Section 2.9, background features were obtained from a variety of clutter

environments over-flown By the SIRDS sensor. Figures 15 and 16 show scenes of Eglin Beach in

the red and blué bands, respectively. . L

10 e 20 20
Figure 15. Image of Eglin beach in the red band. The portion of this
scene inside the rectangular window provided training data to the RBF
network. The window was chosen to highlight what appeared to be a
strip of beach towards the lower right-hand corner of the scene. The
window deliberately excluded the strong feature towards the upper
right-hand corner of the scene. This feature did not correlate with any
known object on the ground and appeared to be due to glare from the
sensor optics. ’

50 100

Figure 16. Image of Eglin beach in the blue band. The anomalous
feature discussed in Figure 15 is less evident in this image, and the
image displays more texture than in the red band.
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Figures 17 and 18 show scenes of the South Carolina countryside in the red and blue bands,

respectively.

Figure 17. Image of South Carolina countryside in the red band. The
pixels inside the rectangular window were chosen for the training data
set. :

Figure 18. Image of South Carolina countryside in the blue band. - .
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Figures 19 and 20 show scenes of the North Carolina countryside in the red and blue

bands, respectively.

150§

100
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Figure 19. Image of North Carolina countryside in the red band.

Figure 20. Image of North Carolina countryside in the blue band.
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Figure 21. Image of Virginia countryside in the red band.

100

200 250

100 150

Figure 22. Image of Virginia countryside in the blue band.
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4.2.2 Feature Selection

The eighteen raw pixel intensities from red/blue image chip pairs were the first features to

be tested. However, the computer had insufticient memory to build the complete regression tree for

this eighteen-dimensional featﬁre space. Thus Z écores and Holmes parameters were investigated
as a m;ans of combining the inputs into more meaningful statistics and~ to reduce the
dimensionality of the input space.

The Z score was taken from work already performed by Baxley er al. (2000) and
designated as Zg. The concept of this Z score, described in Section 3.5.2, is that the center pixel is
usually much brighter than the avemge of the pixels immediately surrounding it in a target image
chip. This finding i§ especially valid for sub-pi;(el missile detection, since if light from the missile
is incident on a very small (sub-pixel) portion of a detector element, its energy is largely
concentrated in that one image pixel. Conversely, background clutter is usually unifonnl): high or
low in intensity over small regions. Thus the ratio of a cer;ter pixel intensity to the surrounding

pixels average intensity should be high for target chips and low for background chips.

The second Z-score-like statistic was the Holmes parameter, which is normally associated

-with double-gated filtering techniques. The Holmes parameter was designated Zy. The concept of

the Holmes parameter, described in Section 3.5.3, is that two groups of pixels extracted from an
image will differ significantly in mean intensity if one of the groups is mainly an aggregaté of
target pixels. Thus the Holmes parameter should also be high for target chips and low for
background chips. The Holmes parameter has been shown effective for detecfing extended sources
such as in Synthetic Aperture Radar (SAR) imagery (Morin, 2000), but is adaptable to point

sources (whereas the opposite is not usually true).
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4.2.3 Principal Component Analysis of Features
A row of the feature vector was arranged as {Zp rep, Zp BLue, Zn reps Zu pLue]. The
covariance matrix of the 12,000-case feature set was -

Covariance (Xy) = 3.3996 0.1510 0.1960 0.0949
) 0.1510 24125 0.2004 0.1149
0.1960 0.2004 4.0751 3.2109 v
0.0949 0.1149 3.2109 3.7354. 4.1)

The eigenvectors and eigenvalues of the covariance matrix were

Eigenvectors = -0.1403 -0.9882 -0.0228 0.0573
09889 -0.1369 -0.0298 0.0491
00114 00277 06890 0.7242

-0.0472  0.0631 -0.7238 0.6855, “4.2)
Eigenvalues = 23833 0 0 0
0 3.4090 0 0
-0 0 0.6868 0

0 0 0 7.1436 . - 4.3)

As shown in Equations 4.2 and 4.3, the eigenvectors corresponding to the two largest eigenvalues
were [0.0573, 0.0491, 0.7242, 0.6855]" and [-0.9882, -0.1369, 0.0277, 0.0631]", which were the
principal components of the Holmes parameter and Z score in the blue band, respectively. The
projection x of any vector b onto the column s;;ace of these eigenvectors was computed using
x = (A4, _ _ 4.4)
where4 = 0.0573 0.9882
' 0.0491 -0.1369
0.7242  0.0277
0.6855 0.0631,
and b = transpose(Xy).

The goal was to project the 4-dimensional feature space onto a 2-dimensional space for better

visualization. The new feature space is shown in Figure 23.
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u2, Blue Z Score

u1, Blue Holmes Parameter

Figure 23.  Projection of the input space into two dimensions by
principal component analysis. The axes ul and u2 correspond to the
dimensions of the Holmes parameter and Z score for the blue bands
respectively, as the eigenvectors of these two features corresponded to
the two largest eigenvalues of the covariance matrix. The red data
points represent components of the original missile features projected
onto the new feature space and the black data points represent
components of the background features projected onto the new space.
.. There is a slight overlap between the two sets of data, but overall they
appear to occupy different regions of the feature space. This result
means that the features chosen have distinguishing characteristics that
should provide a good discrimination capability to the RBF network.
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Figure 24 shows the two-dimensional space of the red and blue band Z scores, and Figure

25 shows the two-dimensional space of the red and blue band Holmes parameters.

-
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Figure 24. Two-dimensional space of the Z scores. Red data points represent Z
scores of missiles and black data points represent the Z scores of background
training cases. :
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Figure 25. Two-dimensional space of the Holmes parameters. Red data points
represent Holmes parameters of missiles and black data points represent Holmes
parameters of the background training cases. Holmes parameters corresponding
to missiles are generally large-valued and positive, whereas those corresponding
to background are relatively small-valued and positive and negative. The distinct
‘spike” of missile data points away from the generalty linear distribution is more
apparent here than in the Z score scatter plot. These spikes are the only
immediately apparent difference between missile signatures in the boost and
sustain phases of the missile firing.
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Figure 26 shoWs the red and blue missile Z scores as a function of time, and Figure 27

_ shows the red and blue Holmes parameters as a function of time.
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Figure 26. Red and blue missile Z scores versus time. Red Z scores
are slightly higher than blue Z scores at the start of missile firing (the
boost stage), which is when the exhaust plume is very hot. The blue Z
score temporarily dominates after the motor cuts-out. However, the two
features are mostly identical for the remainder of the training set, which
indicates that the missile becomes less distinguishable from the
background after the booster cuts-out.

- 12

4
e at e =

»

Red and Biue Hoimes Paramelsi
™

4,&“'\, | %‘

i
[
i w\!‘)LV' it ﬁ‘i i

00 200 400 600 800 1000 1200 1400 100 1800 2000
. Time (frame mumber}

Figure 27. Red and blue Holmes parameters versus time. Red Holmes
parameters are much higher than blue Holmes parameters during
missile boost and this produces the distinct ‘spike’ of missile data
“points in Figure 25. The greater separation between red and blue
Holmes parameters than red and blue Z scores during missile boost
indicates that the Holmes parameter should be the more powerful
feature in missile detection. ‘
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4.3 TherRBF Network

The RBF ﬁeural' network was produced by configuring the regression tree algorithm to
. grow td a minimum of 100 input cases in a node an;i by scaling the size 6f~' the hyper-rectangles
associated with eacﬁ node by a factor of two. The training vector contained 12,0(50 cases and the
target vector conitained 12,000 elements. Each eletﬁent of the’target vector corresponded to onc;
case in the training vector and had a value of 1.0 if the case came from the missile data set and 0.0
if it came’ from a background data set. The resulting neural network consisted of 103 RBF centers
distributed in the four-dimensional feaﬁne space with individual radii and weights associated with
. each center. The RBF cenfers, radii, and weights are listed in Appendix A.

Information returned from ﬁe regression tree method indicated that thé red band Z score
was the first feature to be split and was also the most often split: 107 times. The blue band Z score
was the second feature to be split, but it was only split 0;106. The red and blue band Holmes
parameters were the third andn fourth features to be split: five and two times, respectively. Orr
(1999) suggests that the feature that is split first and/or most often split is the most relevant (and
thus useful) feature for discrimination. However, Figure 26 shows that red Z scores are not
significantly different from blue Z scores (even during missile boost). Therefore, the regression tree
method needed to partition the red Z score data set much more than the other features’ data sets in
order to cluster sufficient red Z scores to discriminate between missiles and background. On the
other hand, Figure 27 shows that red Holmes parameters are clearly higher than blue Holmes
parameters during missile boost. Holmes parameters (alone) displayed sufficient discrimination
between missiles and background (as found in the principal component analysis discussed in
Section 4.2.3) and thus did not require much partitioning by the regression tree method. Therefore,

the Holmes parameter is (logically) the more useful feature for discrimination (contrary to Orr’s

conclusions about the regression tree method’s automatic relevance determination).
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Coxrectad Pixel intensity

4.4 Test Results
Initially, the 3 by 3 window transform was moved over an entire test frame to apply the

RBF network to every pixel in the scene. However, this method was slow due to the largé number

of operations needed for a 256 by 256 image. Figure 28 shows intensity plots for two frames from

*

the ‘unseen’ missile data set used to test the RBF network.

Corrected Pixe! Intensity

Figure 28. Missile test frames. The intensity plot on the left is from
the red band, and the plot on the right is the frame that immediately
followed in the blue band. The missile is the sharp peak located at
coordinate {51, 125}.
Figures 29 and 30 show the probability density and target location maps, respectively,

obtained when the 3 by 3 window was slid over the entire image in each band and applied to the

RBF network.
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Figure 29. Probability density mapping from analyzing an entire test
frame. The RBF network determined that many parts of the scene
contained missiles with a high probability, even though the test scene
contained one actual missile. The red spikes in the map indicate pixels
that had an 80% or greater chance of containing a missile. The large
number of false alarms is probably due to irregularities in the noise
floor of the data. Pixels in noise can appear to be missiles if the mean
of the noise around them is low enough to enhance the features
calculated for these pixels. ‘
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Figure 30. Target location map from analyzing entire test frames. The
red dots indicate pixels that were given a 95% or greater probability of
containing a missile by the RBF network. There were 401 of these
potential targets in this scene alone, of which only one, at coordinate
{51, 125} and marked by the black arrow, was the true missile.

A technique for eliminating spurious detections compares results from successive frames
with a logical AND operation. Therefore, the next two red/blue frames in the data set were
“analyzed and their (>95%) target locations ‘ANDed’ with the previous target location map to

produce the comparison mapping shown in Figurei3 1.
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Figure 31. Result after two-frame registration and comparison. Target
location maps for pixels with greater than 95% probability of
containing missiles were compared using a logical AND operation.
Only targets that appeared in the same locations in both maps were
retained. The number of potential targets was reduced to 99, much less
than the original 401 but still including too many false alarms. The
actual missile was one of the retained targets as indicated by the black
arrow.
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l

Normalize the input data by subtracting the mean and
dividing by the maximum pixel values in each frame.

Apply the Global Threshold.

A 4

Extract the 3x3s around those Share coordinates Extract the 3x3s around those

pixels above the threshold. . » pixels above the threshold.

Calculate the Z score and Holmes parameter features
using the pixel values in the 3x3s from both bands.

Apply the feature vectors to the RBF network to
predict the probabilities for each pixel under test.

Generate a probability density mapping of the results
and find highly probable target locations for use by a
tracking algorithm.

I

Figure 32. Near real-time missile detection algorithm block diagram.
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The threshold level must be adaptable to particular situations that depend on the strength of
noise in the data. A missile in its initial boost phase is always brighter than the average intensity of
the image, but the missile signature may fall to near the background because of the plume

becoming cooler once the boost phase is complete. Therefore, the threshold level must be positive

* 1

and higher than the average intensity in an image, but not too high above the average intensity as to
completely ignore potential targets that may be near the noise floor. Figure 33 shows that the noise

floor rarely exceeded 0.01 in a profile of the red band test image.
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Figure 33. Red band test image profile. In profile, the normalized
intensity of the missile-bearing pixel is clearly much greater than the
other pixels, while the normalized intensities of the background pixels
rarely exceed 0.01.
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Therefore, a global threshold of 0.01 (normalized intensity) was applied to the red band

test image to remove from consideration pixels that were clearly too low in normalized intensity to

be potential missiles. Figure 34 shows the

image profile after this thresholding.

N -} SIS -

3 A S P

S TS R PR RRTR

100

1: L 1
- 150 200 250
Pixel coordinate

Figure 34. Thresholded red band test image profile. The smaller peaks
to the left of the actual missile indicate those pixels that had normalized

intensities that exceeded 0.0

1. Only these pixels and the missile-bearing

pixel were retained for further processing to concentrate detection
~ resources and increase the speed of the detection process.
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After thresholding, only 26 pixels from the test image remained in consideration. As
expected, the missile-bearing pixel probability was near unity, while the other pixel probabilities

were 0.4 or lower. The resulting probability density map is shown in Figure35.
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Figure 35.  Result after global thresholding at 0.01 normalized
intensity. The only pixel with a probability near unity exactly

- corresponded to the missile-bearing pixel in the test image, and the
RBF network operated in near real-time as a result of having fewer
potential targets to analyze.
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.4.6 Receiver Operating Characteristic (ROC) Curves

The performance of the RBF network was characterized using Receiver-Operating-
Chafacteristie (ROC) curves, which plot the probebility of correct detection versus the number of |
false alarms for elassiﬁcation thresholds from 0.05 to 1.0. These parameters were chosen since the
RBF network had been trained to respond to reissile-bealjing pixels with the value 1.0, an(.i to
respond to background pixels with the value 0.0, where pixels with probabilities above the
- threshold were claesiﬁed as missiles. Intuition suggests that probabilities above 0.8 (i.e., pixels
with greater than an 80% chance of 'being a missile) were best for detecting missiles. However, the
optimum threshold is situation specific, since missile IR signatures change with the engagement:
environment and the probability of the target.pixel matching the training examples may change
accordingly.

The probability of correct detection can only be ;)ne or zero because there was only ever
one missile in a scene. However, the number of false alarms associated with a correct detection can
vary greatly depending on the classification threshold used to declare the missile. The optimum
classification threshold occurs when the ROC curve simultaneously achieves zero false alarms and
unity probability of correct detection. Figures 3’6 and 37 show ROC curves at different stages of the
missile firing. Figure 36 shows the ROC curve for an image at the start of the missile firing, where
the exhaust plume is very hot and the missile signature is easily distinguishable from the
background. Figure 37 shows the ROC curve for an image after the missile motor has cut out.
Although the two curves look identical, the positions and values of classification threshold with

respect to false alarms is very different.
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Figure 36. Receiver Operating Characteristic (ROC) curve during
. missile boost phase. The missile is correctly detected for classification
thresholds up to 0.85, indicating that the RBF neural network predicted
the presence of the missile with a high probability in this phase of the
missile firing. The penalty for using lower classification thresholds than
0.6 is an increase in the number of false alarms. The penalty for using a
classification threshold higher than 0.85 is the non-detection of the
missile. Therefore, there is a trade-off between maintaining a 100%

probability of detection and the number of false alarms that can be

tolerated.
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Figure 37. ROC curve after the missile motor has cut out. The
classification threshold at which the missile drops out of the picture is
much lower than earlier in the missile firing because the missile
signature has diminished so greatly that the RBF neural network no
longer predicts the presence of the missile with high probability. A
classification threshold higher than 0.45 at this stage of the engagement
would result in non-detection of the missile.
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The ROC curves showed that the optimum threshold for detécting the actﬁal missile varied
with time. Setting the threshold too low invited detecting many false alarms,‘ whereas settiﬂg it too
high resulted in omissic;n of the actL;al miésilq. In general, missilég could be reliébly detected ﬁsing
probability thresholds of 0.4 or higher at a small cost in false alarms (since the majority of
backg;ound pixeis had probabilities lower than 0.4)‘. However, the threshold must be adaptable to
compensate for variations in the RBF network probability estimations.

An adaptive method could be based on the fly-out characteristics of missiles. The miséile
plume is usually very hot during launch as the motor boosts the missile off the rail and imparts a
rapid acceleration. This boost phase may last two to three seconds, after which the motor coasts the
missile for the remainder of the éngagement aiOng its intercept trajectory (sometimes with a final
boost at the end of the intercept to give the missile extra impetus in the end-game). It is during the
coast phase tha.lt the nﬁssile signature may fall to values at or below the background clutter where
the neural network may not recognize the missile. More tests are needed to obtain data for training

an RBF network to recognize missiles in this phase.
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4.7 Summary of Résults '

RBF network training took longer to complete than expected due to the complicated
cohﬁguraﬁbn rules for the ,reg:ression tree. method by Orr (1999). It is unknovs;n V\;héther the
network parameters obtained were theAbest solution to the problem (available computer resources
limited the depth to which the regression tree could grow). The RBFs u;ed here were developed by
configuring the regression tree to split the input data until there were a minimum of 100 input cases
in a single node and by scaling the hyper-rectangles associated with each node by the factor of two.
The optimum RBF network was determined by selecting iRBFs in the tree that most decreased the
prediction error using leave-one-out cross-validation. The resulting RBF network consisted of 103
RBF centers representing a 12,000-case train-ing set. that consisted of 2,000 missile cases and
10,000 background cases from infrared images of Eglin beach and South Carolina, North Carolina,
and Virginia countryside. )

The RBF network was slow to predict reéponses for entire image frames due to the large
amount of processing required. The results also contained many false alarms due to noise in the
data. A global thresholding stage was applied (prior to the RBF network) to red band inputs to
suppress pixels whose normalized intensities were below that expected of aqtual missi}es, and the
RBF network then performed faster and with fewer false alarms. ROC curves showed that the
optimurn probability threshold for detecting the actual missile varied with time.

Overall, the RBF network, once designed and implemented in a near real-time multi-stage
algorithm, correctly recognized missiles in two-color infrared imagery while producing a low

number of false alarms.




5. Conclusions and Reconimendations
5.1 Restatement of Research Objectives
- The obje;tivgs of this research wére to:

1. 'Propose a method for detecting sub-pixel missile siénatures in two-color infrared
images using G‘aussian kadial Basis Function (RBF)-neural networks.

2. Evaluate the performance of this detection technique by training and testing the neural
network with data containing real missile and background éignatures.

3. Determine the near real-time effectiveness of the neural network in a‘ real-world
missile warning system.by applying previously unseen images to the network and
obtaining Receiver Operator Chara;:teristic (ROC) curves. |

5.2 Conclusions
52.1 Combining Regression Trees and Radial Basis Function Neural Networks

The use of regfession trees for generating radial basis function neural networks is
innovative. However, the tree building pfocess is also memory intensive and limits the amount of
training data. The resulting RBF network is also dependent on the initial configuration of the
regression technique; the ‘minimum members per node’ and ‘hyper-rectangle RBF scaling factors’
greatly influence the final design. An optimal combination of these parameters is not intuitive, and
only trial-and-error finds a workable solution for particular situaﬁons. Nevertheless, the techniques
of Orr (1999) are consistent with the development of radial basis function neural networks and

address the research objectives.




S.i.Z Z Score and Holmes Parameter

The Z score and Holmes parameters were effective in differentiating pixels that represented
rﬁissilés from those which contained only bacl;ground; a pixel .containing energy from a missile is
significantly ﬁigher in intensity than its surrounding neighbors, whereas piXels from background
scenes are usually uniformly high or low in i;ltensity over a local region. The Holmes para;meters
were rhuch larger in the red band than in the blue band during missile‘ boost, which (probably)
enabled the RBF network to operate as effectively as it did. The red and blue Z scores did not
display as large a separation as fhe Holmes parameters during the same boost phase of the missile
firing. Automatic relevance determination by regression trees found that the red band Z scores
required the most partitioning to enable their'use in the neural network. The red and blue band
Holmes parameters were the last of the four features to be split by the regression tree method,
indicating that these features were sufficiently distin;t on their own for discriminating between
missiles and background; The use of only four features (and not one feature for each of the original
eighteen raw pixel intensities) averted the curse of dimensionality.
5.2.3 Data Normalization

Instead of compensating for variations between data sets, all data was normaﬁzed by
subtracting the mean and dividing by the maximum pixel intensity in each image before neural
network processing. As a result, the neural network algorithm only processes intensity ratios
instead of high-value absolute intensities.
5.2.4 Global Thresholding

Global thresholding is a pre-proceésing stage that narrows the field of interest for the RBF
network and concentrates detection resources in only those areas .Of the image that iﬁtuitively

contain missiles. The use of normalized data also means that the level of thresholding is uniformly

applicable to a variety of data sets even if they represent different environments.
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" 5.2.5 Overall Performance

The RBF network-based missile detection algorithm performs very well in recognizing the
correct target in the tested images. Intentional design of the RBF network respomse to mimic

probability estimation Aliiows a mapping of the feature space td a corresponding probability density

-
'

space from which individual pixels are clearly likely (or unlikely) to be missifes depending on their
values between zero and one. ROC curves of the results show that the probability ﬁuqsholds that
best eliminate false alarms vary as a function of time, and thus these thresholds need to be adaptive
to compensate for \)ariations in missile IR signatures during typical engagements. Nevertheless, |
this research demonstrates that RBF neural networks are effective at two-color IR missile
detection. The algoritilms that performed data collection, neural network training and testing, and

missile detection are listed in Apper-ldix B.
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5.3 Recommeﬁdaﬁons for Future Research

The following are Arecommendations for further research:

- L Tﬁe MatlaB toolboxés by Orr (1999) enable ‘fof;vard selection’ and ‘ridge regression’.
techniques to be used as alternatives to the regression tree method consideféd in this
thesis. Thesé techniques should be investigated. '

2. The Holmes parameter clearly differentiates between missile boost and sustain phases.
Therefore, this difference could be used to tailor the training data set to optimize the
RBF network to detect missiles in their boost phase (where the exhaust piume is at its
hottest and thus most recognizéble from the background). The Holmes parameter
displayed a significantly better discrimination capability than the Z scbre (mostly
during the missile boost phase). Therefore, the Z score could be replaced by other .
features that characterize the plume in this phase of the.missile firing as effectively as
the Holmes parameter. H&vever, the total number of input features to the RBF network
should still be kept small to avert the curse of dimensionality.

3. A neural network is only as effective as thé data with which it is trained. éurrently, the
RBF network is trained to detect missiles that remain at the same ground location. A
typical missile-warning system would not consider such a target a threat, since the
missile does not approacﬁ the host platform. Therefore, miséile fly-out data is required
to train the RBF network to recognize the characteristics of real threats.

4. Finally, if data with missile fly-out characteristics becomes available, a tracking
algorithm should be designed that uses the térget information provided by the detection

algorithm developed here, which generates potential target coordinates and the

probabilities that they correspond to missiles. -
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Appendix A
A.1  RBF Centers: Columns | through 7
82.372;1 82.3781 0;3386'82.4454 8é.3'[_81 -38.1868 0.2568
55.0594 55.0594 55.0594 55.0594 55.0594 55.0594 55.0594
1.9560 63244 29597 -2.9597 1.6214 1.9'500 1.9500

32.5097 32.5097 32.5097 32.5097 32.5097 32.5097 32.5097

Columns 8 through 14

82.3781 82.3781 82.3781 82.3781 82.3781 -38.1868 -38.3718

55.0594 55.0594 55.0594 55.0594 55.0594 66.2234 -10.8908

20714 67744 20714 20714 24155 1.9500 1.9500

32.5097 32.5097 -2.8484 37.2187 32.5097 32.5097 32.5097

Columns 15 through 21

0.0573 -0.0700 0.1150. 0.0073 0.1346 0.1433 0.0489

-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908

1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500

32.5097 32.5097 32.5097 32.5097 32.5097 32.5097 32.5097

Columns 22 through 28
0.1479 823781 823781 03230 82.4298 823781 0.3913
-10.8908 55.0594 55.0594 55.0594 55.0594 55.0594 55.0594

1.9500 2.6599 7.0187 7.0187 7.0187 2.6599 7.0187

32.5097 32.5097 32.5097 32.5097 32.5097 37.5518 32.5097
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Columns 29 throixgh 35V

01514 0.0630 0.1540 0.0679 0.1563 0.0720 0.1581
-10.8908 -10.8908,-10.8908 -10.8908 -10.8908 -10.8908 -10.8905
1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500

32.5097 32.5097 32.5097 32.5097 32.5097 32.5097 32.5097

Columns 36 through 42

0.0750 0.1592 0.0774 0.1605 0.0796 0.1614 0.0.8.13
-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908
1.9500 1.9500 .1.9500 1.9500 1.9500- 1.9500 v1.9500

32.5097 32.5097 32.5097 32.5097 32.5097 32.5097 32.5097

Columns 43 through 49

0.0829 0.1>630 0.0844 0.0858 0.0871 0.1650 0.0883
-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908
1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500

32.5097 32.5097 32.5097 32.5097 32.5097 32.5097 32.5097

Columns 50 through 56

0.0894 0.0903 0.1666 0.0913 0.1671 0.0923 0.0933
-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908
| 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500

32.5097 32.5097 32.5097 32.5097 32.5097 32.5097 32.5097
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Columns 57 through 63
0.1680 0.0942 0.1685 00950 0.0958 0 0966 0.1696
-10.8908 -10. 8908 -10.8908 -10.8908 -10.8908 -10. 8908 -10.8908
1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500

32.5097 32.5097 32.5097 32.5097 325097 32.5097 32.5097

Columns 64 through 70

0.0572 0.0979 0.0986 0.0992 0.1709 0.4234 0.4583
-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 55.0594 55.0594
>1.9500 1.9500 1.9500 1.9500 1.9500l 7.0187 7.0187
32.5097 32.5097 32.5097 32.5097 32.5097 32.5097 32.5097
Columns 71 through 77

0.4992 0.5479 0.6037 0.6818 0.7721 0.8687 82.7046
55.0594 55.0594 55.0594 55.0594 55.0594 55.0594 55.0594
7.0187 7.0187 7.0187 7.0187 7.0187 7.0187 7.0187

32.5097 32.5097 32.5097 32.5097 32.5097 32.5097 32.5097

Columns 78 through 84

0.1712 0.1716 0.1013 0.1720 0.1723 0.1026 0.1730
-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908
1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.950>0

32.5097 32.5097 32.5097 32.5097 32.5097 32.5097 32.5097
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Columns 85 through 91

0.1041 0.1734 0.1054 0.1061 0.1744 0.1751 0.1092
-10.8908 -10.8908 -10.8§08 -10.8908 -10.879087 -10.8908 -10.8908
1.9500 1.9500 1.9500 1.9560 .1.9500 1.9506 1.9500

32.5097 32.5097 32.5097 32.5097 32.5097 -32.5097 32.5097

Coiumns 92 through 98

0.1760 0.1770 0.1124 0.1141 0.1812 0.1269 0.1879
-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908
1.9500° 1.9500 1.9500 1.9500 1.9500' 1.9500 1.9500 |

32.5097 32.5097 32.5097 32.5097 32.5097 32.5097 32.5097

Columns 99 through 103

0.1354 0.1917 0.1948 0.1840 0.2031
-10.8908 -10.8908 -10.8908 -10.8908 -10.8908
1.9500 1.9500 1.9500 1.9500 1.9500

32.5097 32.5097 32.5097 32.5097 32.5097
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A2 RBF Radii:

Columns 1 through 7

164.2136 164.2136 0.1346 164.6790 164.2136 76.8582 0.0290
154.2284 154.2284 154.2284 1542284 154.2284 154.2284 154.2284
© 18.5681 9.8192 8.7488 8.7488 0.4134 18.5681 18.5681

80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 80.1342

Columns 8 through 14

164.2136 164.2136 1642136 164.2136 164.2136 76.8582 76.4881
154.2284 154.2284 154.2284 154.2284 154.2284 131.9004 22.3280
0.4867 8.9192 0.4867 0.4867 0.2016 18.5681 18.5681

80.1342 80.1342 9.4182 70.7160 80.1342 80.1342 80.1342

Columns 15 through 21

03701 0.1155 02546 0.0391 0.2155. 0.1981 .0.0093

22,3280 22.3280 22.3280 22.3280 22.3280 22.3280 22.3230
18.5681 18.5681 18.5681 18.5681 18.5681 18.5681 18.5681

80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 80.1342

Columns 22 through 28

0.1888 164.2136 164.2136 0.1035 164.1101 1642136 0.0331
22.3280 154.2284 154.2284 154.2284 154.2284 154.2284 154.2284
18.5681 0.2871 8.4305 8.4305 8.4305 0.2871 8.4305

80.1342 80.1342 80.1342 80.1342 80.1342 70.0500 80.1342
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Columns 29 through 35

0.1818 0.0051 0.1767 0.0046 0.1721 0.0036 0.1685
22'.3280 22.3280  22.3280 22.3280 22:3280. 22.3280 22.3280
18.5681 18.3681 18.5681 18.5681 18.5681 18.5681 18.5681

80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 80.1342

Columns 36 through 42

0.0023 0.1662 0.0026 0.1636 0.0017 0.1619 0.0017
22.3280 22.3280 22.3280 22.3280. 22.3280 22.3280 22.3280
18.5681 i8.5681 18.5681 18.5681 18.5651 18.5681 18.5681

80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 80.1342

Columns 43 through 49

0.0015 0.1587 0.0015 0.0013 0.0013 0.1546 0.0012
223280 22.3280 22.3280 22.3280 22.3280 22.3280 22.3280
.18.5681 18.5681 .18.5681 18.5681 18.5681 18.5681 18.5681

80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 80.1342

Columns 50 through 56

0.0009 0.0010 0.1515 0.0010 0.1505 0.0011 0.0009
223280 22.3280 22.3280 22.3280 22.3280 22.3280 22.3280
18.5681 18.5681 18.5681 18.5681 18.5681 18.5681 18.5681

80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 80.1342
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Columﬁs 57 through 63

0.1486 0.0009 0.1477 0.0008 0.0009 0.0006 01454

22. 3280 223280 223280 223280 22. 3280 223280 22. 3280 v
-18.5681 18.5681 18.5681 18.5681 18.5681 18.5681 18.5681

80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 80.1342

-Columns 64 through ‘70 ,

0.0007 0.0007 0.0006 0.0007 | 6.1428 0.0311 0.0385
223280 22.3280 22.3280 22.3280 22.3280 154.2284 154.2284
18.5681 18.5681 18.5681 18.5681 18.56.81 184305 8.4305
80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 80.1342
Columns 71 through 77

0.0434 0.0539 0.0577 0.0986 0.0820 0.1111 163.5606 .

154.2284 154.2284 1542284 154.2284 154.2284 154.2284 154.2284,

8.4305 8.4305 8.4305 8.4305 8.4305 84305 8.4305

Y

80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 80.1342°

Columns 78 through 84

0.1422 0.1414 0.0008 0.1407 0.1400 0.0005 0.1386
22.3280 22.3280 22.3280 22.3280 22.3280 22.3280 22.3280
18.5681 18.5681 18.5681 18.5681 18.5681 18.5681> 18.5681

80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 80.1342
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"Columns 85 through 91

0.0007 0.1379 0.0007 0.0007 0.1359 0.1343 0.0008

223280 223280 22.3280 22.3280 22.3280 22.3280 2_2.3280‘-

18.5681 18.5681 18.5681 18.5681 18.5681 18.5681 18.5681

80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 80.1342

Columns 92 through 98

0.1327 0.1306 0.0014 0.0020 0.1222 0.0134 0.1087
22.3280 22.3280 22.3280 22.3280 22.3280 22.3280 22.3280
18.5681 18.5681 18..5681 18.5681 18.5651 18.5681 18.5681
80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 86.1342
Columns 99 through 103

0.0037 0.1013 0.0951 0.0029 0.0074

22.3280 22.3280 22.3280 22.3280 22.3280

18.5681 18.5681 18.5681 18.5681 18.5681

80.1342 80.1342 80.1342 80.1342 80.1342
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A3 RBF Weights: 1.0e+003 *

1to21 : 22t0 42 43 to 63 64 to 84 85t0 103
10.0008 -2.1481 0.0000 . 0.0000 | -0.0000
0.0250 - 0.0156 : 2.7871 0.0000 0.0202
-0.0002 - -1.0693" 0.0000 0.0000 -0.0000 - -
-0.0042 0.0021 0.0000 0.0000 0.0000
0.0000 -0.7011 0.0000 -0.9954 0.4093
0.0147 -0.0173 2.7355 0.0005 1.0767
-0.0001 0.0005 -0.0000 0.0009 -0.0000
1.2521 -3.3815 0.0000 0.0007 0.8953
-0.0543 - ~0.0000 -0.0000 0.0006 | 0.8563
-0.0550 -5.1024 ' -0.0070 0.0004 -0.0000
-1.3340 0.0000 0.0000 - 0.0009 -0.0000
-0.0001 -2.3199 0.1945 0.0001 1.9783
-0.0120 0.0000 0.0000 - 0.0007 0.0000
-0.0009 0.2221 0.0000 1.8049 -2.6575
-0.0082 0.0000 -0.6141 -1.8438 -0.0000
0.0019 1.3877 0.0000 -1.6324 1.8304
0.2864 0.0000 -1.4453 0.0000 -0.4556
-0.0000 3.0710 -0.0000 -0.5817 . 0.0000
-3.3314 -0.0000 0.0000 -0.9028 0.0000
9.0486 2.2036 . -0.0000 0.0000
0.0000 0.0000 -0.9039 -0.6729

Table 1. Weights associated with each RBF center
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~ Appendix B

B.1  missile_data_collection.m
% Purpose: Read frames from the datafile one at a time,_ and find the
brightest pixel in each frame. Then extract the 3 by 3 array of pixels .
immediately surrounding that pixel, calculate features from the pixels,
and arrange the features in a row vector.

ciear all;

close all;

i=1;

missile = zeros(2500,4);

form = 0:2:5000
% read the data for the red and blue bands
{im_red] = ldgal('sdatab6', m, 256);
{im blue] = ldgal({('sdata6', m+l, 256);

% find the brightest spot in each frame and its matrlx coordinate
[rl, cl] = find(im_red==max(max(im red))); '
[r2, c2] = find(im blue==max (max(im blue)));

% if the peak intensity occurs over two pixels, pick the larger of the
two coordinates .

yl = ceil(mean(rl));

x1 = ceil (mean(cl));

y2 = ceil(mean(r2));
))

x2 = ceil(mean(c2));

% extract the 3 x 3 matrix around each pixel

red = imﬁred((yl—l):(y1+l),(xl—l):(x1+1)); N
blue = im blue((y2-1):(y2+1), (x2-1):(x2+1});

% correct for variations between images and nornmalize the dataset by
$ subtracting the mean from each value and dividing by the maximum
max_red = zeros(3) +.max(max(im red));

max_blue zeros (3) + max(max(im_blue}):;

mean red = zeros(3) + mean(mean(im_red));
mean blue = zeros (3) + mean (mean (im blue)):
new_red = (red - mean red)./max_red;
new blue = (blue - mean_blue)./max_blue;
% define the outer ring of pixels -
red outer = [new_red(1l,1) new red(l,2) new _red(1l,3) new_red(2,1)
new red(2,3). new _red(3,1) new red(3, 2) new red(3,3)1;
blue_outer = [new_blue(l,1) new blue(1l,2) new blue(l 3) new blue(2,1)

new_blue(2,3) new blue(3,1) new _blue(3,2) new  blue(3,3}1;
% calculate the Z score and Holmes parameter features for training the
neural network
fl1 = new_red(2,2)/sum(red_outer);

f2 = new blue(2 2)/sum(blue outer);
f3 = (new_red(2,2) - mean(red_outer))/sgrt(var(red_outer));
f4 = (new blue(2,2) -.mean(blue_outer))/sgrt(var(red_ outer)),
missile(i,:) = [f1 £2 £3 £f4];
i = 1i+1;

end
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B.2 background_data_collection.m

% Purpose: Read frames from background datafiles one at a time, and take
a 150x150 portion from a characteristic region of the image. Divide ‘the
portion into 2500 (3 by 3) image chdips, and arrange the data in a table.

ciear all;
close all;

i=1; . % index value ) !
background data = zeros(2500,4); % initialize table of pixel values
m = 2;

% read the data for the red and blue bands
[im red] = ldgal('eglinbeachl', m, 256);
{im_blue] = ldgal('eglinkeachl', m+l, 256);
3 extract the 150x150 portion of the images
red = im red(1:150,101:250);
blue = im blue(1:150,101:250);
% find the maximums and means of the 256x256 .images
max_red = zeros(1l50) + max(max(im_red));
max_blue zeros (150) + max (max (im red));
mean_red = zeros (150) + mean(mean(im_red));
mean_blue = zeros{150) + mean (mean (im blue));
% subtract the mean and divide by the maximum pixel values
new red = (red ~ mean_red)./max_red;
new blue = (blue - mean blue)./max_blue;
% divide into 3 by 3 chips and rearrange into a row vector,
for y = 1:3:150 ' )
for x = 1:3:150 '
% define the outer ring of pixels
red outer = [new_red(y,X) new red(y,x+1) new_red(y,x+2)
new red(y+1l,x) new red(y+1l,x+2) new red(y+2,X)
new_red(y+2,x+1) new_red(y+2,x+2)]1;
blue outer = [new_blue(y,x) new_blue(y,x+l) new_blue(y,x+2)
new_blue (y+1,x) new_blue (y+1,x+2) new_blue (y+2, x)
new blue(y+2,x+1) new_blue(y+2,x+2)1;
% calculate the Z score and Holmes parameter features
fl = new_red(y+1l,x+1l)/sum(red_outer);

£2 = new_blue(y+l,x+l)/sum(blue_outer); :
£3 = (new_red(y+1l,x+1) - mean(red_outer))/sqrt(var(red_outer));
f4 = (new _blue(y+1l,x+1l) - mean(blue_outer))/sqrt(var(red_outer));
background data(i,:) = [fl1 f2 £3 f£4]; :
i = i+1;

end

end
eglinbeachl = background_data;

%***********************************************************************

% repeat for images from the 13a, l4a and 1l5a data sets, then -
% combine into a single combined vector together with the missile data
%**k***&****&***ﬁ******{'*(v*‘\—******'&******************k*******************
background = (eglinbeachl;1l3a;l4a;15a]; .

load missile

Xtr = transpose([missile;backgroundl);
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B3  rbfnn_training.m

% Design and training of a gaussian radial basis function neural network
% using Matlak Functions for Radial Basis Function Networks by Mark J.L.
Orr, Institute for Adaptive and Neural Computation, Division of
Informatics, Edinburgh University, Scotland, Uk )
load input

load target ’ '

Q

3 Configure parameters

conf.lambda = 0000000001;

conf.msc = 'loo!

conf.minmem = 100 : .
conf.scales = 2;

conf.timer = 'optimization in progress’

% Start the function that determines the centres and radii of a set of
RBFs using the training data and the expected outputs

function [C, R, w, info, conf] = rbf rt 1(X, y, conf)

Hybrid radial basis function network and regression tree.

o0 d° o d0 o°

Solves a regression pfoblem with inputs X and outputs y using a
regression tree and an RBF network selected using tree-guided forward and
backward subset selection. Returns the hidden unit centres C, their radii
R, the hidden-to-output weights w, some additional information info and a
fully instantiated configuration structure conf. :

% .
X is an n-by-p matrix of inputs, where p specifies the number of cases,
and n specifies the number of features per case.

y is a p-by-1 matrix of outputs.

% C is an n-by-m matrix, where m specifies the number of RBF units, and
each n column corresponds to * '

% one centre in the input space.

% R is also an n-by-m matrix, where each column corresponds to a set of
'n' scaling parameters, one for each feature, which determine the width
of the m-th RBF unit. : '

% w is either an m- or an (m+l)-dimensiocnal vector depending on whether
the method has included a bias unit in the network.

$ C, R, and w are used to make predictions from the network.

oo

oe

1¢, &, w, info, conf] = rbf rt 1(Xtr, y, conf)
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B.4 rbfan_testing.m

clear all;
- close all;

-
2

% load the radial basis function netwerk's centre, radii and weight
" vectors ' ’

load centres

load radii®

load weights

n=1;

for m = 0:2:8; .
im_response = zeros(256); % create a 256x256 matrix of zeros

% read data from consecutive red and blue bands
[im_red] = ldgal('m:\sdata8', m, 256);

[im blue] = ldgal{'m:\sdata8', m+l, 256);

$ find the maximums and means of the images in each band
max_red = zeros(256)+max(max(im red));

mean_red zeros (256) +mean (mean (im_red));

max blue zeros (256) +max (max (im_blue))

mean blue = zeros(256)+mean(mean(im blue));

% subtract off the mean and divide by the maximum value in each image
im red = (im_red - mean_red)./max_red; -

im blue = (im _blue - mean_blue)./max_blue;

% divide the image into overlapping 3 by 3 chips

new_im red = transpose(im2col(im_red, [3 3], 'sliding'));
new_im blue = transpose (im2col (im_blue, [3 3], 'sliding')):

for i = 1:64516
% define the outer gate pixels in a row vector :
red outergate = [new im red(i,1l) new_im red(i,2) new_im red(i,3)
new_im red(i,4) new_im red(i,6) new_im_ red(i,7)
new_im red(i,8) new_im red(i,9)]; '

blue_outergate = [new_im blue(i,1) new_im - blue(i,2) new_im blue(i, 3)
new_im blue(i,4) new_im blue(l 6) new _im blue(l 7)
new_lm_blue(’,B) new_lm_blue(l 9)1:

Derive Z-scores for each band
= (8*new_im_red(i, 5))/sum(red_outergate};

%
f
f (8*new_im _blue(i,5))/sum(blue_outergate);

1
2

3 Derive Holmes parameters for each band

£3 = (new_im red(i,5)-mean(red outergate))/sqrt(var(red_ outergate));
f4 (new~1m_blue(1 5)- .
mean (blue_outergate))/sqgrt(var(blue_outergate));

I
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%3 Generate a 4-dimensional vector from these features for input to the
rbf network '

Xt(i,:) = [f1 £2 £3 f4];
end

3 use the RBF network centres, radii and weights to predict the outputs
from each 3 by 3 chip :

Ht = rbf dm(transpose(Xt), C, R);

ft = Ht * w; ) ' v :

% rearrange the response vector into a prcbability density map
im_response(2:255,2:255) = col2im(ft, [254 254], [254 254],'distinct’);

% rescale the map with a range of 0 to. 1l
im response (im_response<0) = 0;
im response (im response>l) = 1;

$ find the indices of the map where its elements are above a certain
threshold ‘ .
{tgt_r, tgt_c] = find(im_response > 0.95);

% plot the target's possible locations on a 2-dimensional map
figure; plot(tgt c, tgt_r, 'r.'); axis([1 255 1 253]); grid on;
figure; surf(im red); shading interp; axis([1 255 1 255 0 .11); view(2);

% store the original image and probability density map for comparison

analysis

red(:,:,n) = im red;
blue(:,:,n) = im blue;
map(:,:,n) = im response;




B.S  detection_algorithm.m

clear all;

- close all;

load centres
load radii

load weights
threshold = 0.01;

temp red = zeros(258);
temp blue = zeros(258);

X = 0.05:.05:1; % set up the axes for an ROC curve

y = zeros(1,10); ) A
M = 3600; % set the number of the last frame to be analyzed
j=1; o

$for m = 0:2:M;

m = 700; -

im_response = zeros(258); % create 256x256 matrices of zeros with an
' additional border 1 pixel-wide

% read data from consecutive red and blue bands

[im red] = ldgal('m:\sdata8', m, 256);

[im blue] = ldgal('m:\sdata8', m+l, 256);

% find the maximums and means of the images in each band

max_red = zeros(256)+max(max(im_red)); ’

mean_red zeros (256) +mean (mean (im_red));

max blue zeros (256) +max (max (im_blue));

mean _blue = zeros(256)+mean(mean(im blue));

i

% subtract off the mean and divide by the maximum value in each image‘
im red = (im_red - mean red)./max_red;
im blue = (im _blue - mean_blue)./max_blue;

. temp red(2:257,2:257) = im red;
temp blue(2:257,2:257) = im _blue;

% apply global thresholdiﬂg to each image
[r, c] = find(temp_red > threshold);

for n = 1l:length(r)
% define the outer gate pixels in a vector
red outergate = [temp red(r(n)+l,c(n)-1) temp red(r(n)+l,c(n))
temp_red(r(n)+1l,c(n)+1)
temp red(r(n),c(n)-1) temp_red(r(n),c(n)+1) temp_red(r(n)-
1,c(n)-1) temp_red(r(n)-1,c(n)) ...
- temp red(r(n)-1,c(n)+1)]:
blue outergate = [temp_blue(r(n)+l,c(n)-1) temp_blue(r(n)+1l,c(n))
temp _blue(r(n)+l,c(n)+1)
temp blue(r(n),c(n)-1) temp_blue(r(n),c(n)+1) temp_blue(r(n)-
1,c(n)-1) temp blue(r(n)-1,c(n))
temp blue(r(n)-1,c(n)+l)];

83




% Derive Z-scores for =ach band
fl = (8*temp_red(r(n),c(n)))/sum(red_outergate);
f2 = (8*temp blue(r(n),c(n)))/sum(blue_outergate);

% Derive Holmes parameters for each band ’ -
£f3 = (temp_red(r(n),c(n))-
mean (red_outergate))/sqrt(var(red_outergate));
f4 = (temp_blue(r(n),c(n))- - \ .

mean(que_outergate))/sqrt(var(blue_outergate));
% Generate a 4-dimensional vector from these features for input to the
rbf network ‘
Xt = [f1;£2;£3;£4];
$ use the RBF network centres, radii and weights to predict the
outputs from each 3x3 chip
Ht = rbf dm(Xt, C, R);
im_response(r(n), c(n)) = Ht * w;
end : :
% remove the border pixels to return to a 256x256 array again
im_response(l,:)=[]; im response(:,1)=[]; im_response(257,:)=[];
im response(:,257)=[];
¢surf (im_response); shading interp; axis([0 255 0 255 0 1]); view(2); -
hold on; -
$surf (im_red); shading interp; colormap(gray); axis ([0 255 0 255 0 0.11);
view(2); figure;
$ find the number of targets that are greater than or equal to each
probability ’ -
for 1 = 1:20
y = sum(sum{im response >= x(i}));
if y=-1 < 0 : .
num_correctly detected(i) = 0;
num_false_alarms(i) = 0;
else .
num_correctly detected(i)
num_false_alarms(i) =y -
end
end
plot (num_false_alarms,num_correctly detected, 'kx-');
axis([-1 max(num false alarms) O 1.11)
xlabel{'# False Alarms'); ylabel('# Correcztly Detested')

1;

.
12
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